Glutaminase

Glutaminase (GLS) is an aminohydrolase enzyme, EC 3.5.1.2, which catalyzes the conversion of the amino acid glutamine to glutamate. Two GLS isoforms have been identified to date, GLS1 (KGA; kidney-type glutaminase) and GLS2 (LGA; liver-type glutaminase).

Products
Background
Literature
Gene Data

Inhibitors

Cat No Product Name / Activity
5460 968
Allosteric inhibitor of glutaminase
5301 BPTES
Selective allosteric glutaminase (GLS1) inhibitor

Glutaminase (GLS) is an aminohydrolase enzyme, EC 3.5.1.2, which catalyzes the conversion of the amino acid glutamine to glutamate. Two GLS isoforms have been identified to date, GLS1 (KGA; kidney-type glutaminase) and GLS2 (LGA; liver-type glutaminase). There is also a shorter splice variant of GLS1, named glutaminase C (GAC). GLS2 is predominantly expressed in the liver, whereas GLS1 and GAC have a ubiquitous tissue distribution.

GLS is activated by inorganic phosphate, which causes inactive dimers to form into active tetramers. Certain transcription factors and enzymes can also regulate GLS activity. The transcription factors c-Myc, NF-κB and STAT can all increase GLS1 expression, while the MEK-ERK signaling pathway stimulates GLS1 activity. GLS1 expression can be downregulated by the ubiquitin E3 ligase APC/C-cadherin complex.

GLS1 and GAC are localized to the mitochondrion, where the glutamate they produce is converted to α-ketoglutarate by glutamate dehydrogenase, which enters the citric acid (Krebs) cycle to form cycle intermediates. This process is crucial in cancer where cells become dependent on glutamine metabolism for the synthesis of amino acids, proteins, nucleotides and lipids, which are essential to drive rapid growth and proliferation. GLS1 expression has been shown to be upregulated in various types of tumor, including breast, lung, cervix and brain, with its expression correlating with malignancy. Glutaminase inhibitors have been shown to reduce the proliferation of these cancer cells in vitro, while having minimal effect on normal cells that don't have the same dependence on glutamine metabolism for their survival.

In the brain GLS is essential for the production of the excitatory neurotransmitter glutamate, and is critical for neuronal growth, differentiation and survival. Modulation of glutaminase levels in the brain has been linked to seizures.

External sources of pharmacological information for Glutaminase :

    Literature for Glutaminase

    Cancer

    Cancer Research Product Guide

    A collection of over 750 products for cancer research, the guide includes research tools for the study of:

    • Cancer Metabolism
    • Epigenetics in Cancer
    • Receptor Signaling
    • Cell Cycle and DNA Damage Repair
    • Angiogenesis
    • Invasion and Metastasis
    Cancer Metabolism

    Cancer Metabolism Poster

    Adapted from the 2015 Cancer Product Guide, Edition 3, this poster summarizes the main targets for cancer metabolism researchers. Genetic changes and epigenetic modifications in cancer cells alter the regulation of cellular metabolic pathways. These distinct metabolic circuits could provide viable cancer therapeutic targets.

    Glutaminase Gene Data

    Gene Species Gene Symbol Gene Accession No. Protein Accession No.
    GLS Human GLS XR_922905 O94925
    Mouse Gls NM_001081081 D3Z7P3
    Rat Gls NM_012569 P13264
    GLS2 Human GLS2 NM_013267 Q9UI32
    Mouse Gls2 NM_001033264 Q571F8
    Rat Gls2 NM_138904 P28492