The cytoskeleton is a dynamic 3-dimensional structure that fills the cytoplasm, and is present in both eukaryotic and prokaryotic cells. The cytoskeleton acts as both muscle and skeleton, and plays a role in cell protection, cell motility (migration), cytokinesis, intracellular transport, cell division and the organization of the organelles within the cell.
The cytoskeleton in the eukaryotic cell is made up of three kinds of protein filaments:
Motor proteins are the driving force behind muscle contraction and are responsible for the active transport of most proteins and vesicles in the cytoplasm. They are a class of molecular motors that are able to move along the surface of a suitable substrate, powered by the hydrolysis of ATP. There are three superfamilies of cytoskeletal motor proteins. Myosin motors act upon actin filaments to generate cell surface contractions and other morphological changes, as well as vesicle motility, cytoplasmic streaming and muscle cell contraction. The kinesin and dynein microtubule based motor superfamilies move vesicles and organelles within cells, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes.
Tocris offers the following scientific literature for Cytoskeleton & Motor Proteins to showcase our products. We invite you to request* your copy today!
*Please note that Tocris will only send literature to established scientific business / institute addresses.