MAPK Signaling

The mitogen-activated protein kinase (MAPK) family is a group of serine/threonine kinases that mediate intracellular signaling. The activation of MAPK involves a cascade consisting of MAPK kinase (also known as MAPKKK or MEKK) that activates MAPK/ERK (also known as MAPKK or MEK). This stimulates a phosphorylation-dependent increase in the activity of MAPK.

Targets
Literature
Pathways

Upon activation, MAPK can phosphorylate a variety of intracellular targets including transcription factors, transcriptional adaptor proteins, membrane and cytoplasmic substrates, and other protein kinases. Three major groups of MAPK cascades have been determined: ERK1/ERK2, JNK/SAPK and p38 MAPK.

Literature for MAPK Signaling

Cancer

Cancer Research Product Guide

A collection of over 750 products for cancer research, the guide includes research tools for the study of:

  • Cancer Metabolism
  • Epigenetics in Cancer
  • Receptor Signaling
  • Cell Cycle and DNA Damage Repair
  • Angiogenesis
  • Invasion and Metastasis
Kinases

Kinases Product Listing

A collection of over 400 products for kinase research, the listing includes inhibitors of:

  • Receptor Tyrosine Kinases
  • Protein Kinases A, C, D and G
  • PI-3 Kinase, Akt and mTOR
  • MAPK Signaling
  • Receptor Serine/Threonine Kinases
Pain

Pain Research Product Guide

A collection of over 250 products for pain research, the guide includes research tools for the study of:

  • Nociception
  • Ion Channels
  • G-Protein-Coupled Receptors
  • Intracellular Signaling
MAPK Signaling

MAPK Signaling Scientific Review

MAP kinase signaling is integral to the regulation of numerous cellular processes such as proliferation and differentiation, and as a result is an important focus of cancer and immunology research. Updated for 2016, this review discusses the regulation of the MAPK pathway and properties of MAPK cascades. Compounds available from Tocris are listed.

Asthma

Asthma Poster

Asthma is one of the most common chronic diseases in the world, affecting over 300 million people. This poster highlights key pathways and new therapies used to treat the condition, including those currently in clinical development.

Learning & Memory

Learning & Memory Poster

Recognition memory enables us to make judgements about whether or not we have encountered a particular stimulus before. This poster outlines the cellular mechanisms underlying recognition memory and its links to long-term depression, as well as the use of pharmacological intervention to assess the role of neurotransmitters in recognition memory.

Pathways for MAPK Signaling

MAPK

MAPK Signaling Pathway

The mitogen-activated protein kinase pathway evokes an intracellular signaling cascade in response to extracellular stimuli such as heat and stress. It can influence cell division, metabolism and survival.