Kainic acid

Pricing Availability Delivery Time Qty
Cat.No. 0222 - Kainic acid | C10H15NO4 | CAS No. 487-79-6
Description: Potent excitant and neurotoxin
Chemical Name: (2S,3S,4S)-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid
Purity: ≥98% (HPLC)
Datasheet
Citations (28)
Literature

Biological Activity

Selective agonist at kainate receptors. Potent excitant and neurotoxin. Also available as part of the Kainate Receptor Tocriset™.

Technical Data

M. Wt 213.23
Formula C10H15NO4
Storage Store at RT
Purity ≥98% (HPLC)
CAS Number 487-79-6
PubChem ID 10255
InChI Key VLSMHEGGTFMBBZ-OOZYFLPDSA-N
Smiles C=[C@@](C)[C@@H]1[C@H](CC(O)=O)[C@@H]([C@](O)=O)NC1

The technical data provided above is for guidance only. For batch specific data refer to the Certificate of Analysis.

All Tocris products are intended for laboratory research use only.

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
1eq. NaOH 21.32 100
water 5.33 25mM with gentle warming

Preparing Stock Solutions

The following data is based on the product molecular weight 213.23. Batch specific molecular weights may vary from batch to batch due to solvent of hydration, which will affect the solvent volumes required to prepare stock solutions.

Select a batch to recalculate based on the batch molecular weight:
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 4.69 mL 23.45 mL 46.9 mL
5 mM 0.94 mL 4.69 mL 9.38 mL
10 mM 0.47 mL 2.34 mL 4.69 mL
50 mM 0.09 mL 0.47 mL 0.94 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

Product Datasheets

Certificate of Analysis / Product Datasheet
Select another batch:
Safety Datasheet

References

References are publications that support the products' biological activity.

Watkins and Evans (1981) Excitatory amino acid transmitters. Annu.Rev.Pharmacol.Toxicol. 21 165 PMID: 6112965

Watkins (1978) Excitatory amino acids. Kainic acid as a Tool in Neurobiology. Edited by E 37 PMID:


If you know of a relevant reference for Kainic acid, please let us know.

View Related Products by Target

View Related Products by Product Action

View all Kainate Receptor Agonists

Keywords: Kainic acid, supplier, Potent, excitant, neurotoxin, Glutamate, Kainate, Receptors, iGluR, Ionotropic, Kainate, Receptors, Tocris Bioscience

28 Citations for Kainic acid

Citations are publications that use Tocris products. Selected citations for Kainic acid include:

Neves et al (2013) The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex. Cereb Cortex 23 1811 PMID: 22710612

Ferando and Mody (2013) Altered gamma oscillations during pregnancy through loss of δ subunit-containing GABA(A) receptors on parvalbumin interneurons. Front Neural Circuits 7 144 PMID: 24062647

deCarvalho et al (2013) Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish. Front Neural Circuits 7 98 PMID: 23734103

Bernard et al (2013) Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures. Nat Commun 59 42736 PMID: 23831253

Krook-Magnuson et al (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. J Neurosci 4 1376 PMID: 23340416

Hou and Yu (2013) Activity-regulated somatostatin expression reduces dendritic spine density and lowers excitatory synaptic transmission via postsynaptic somatostatin receptor 4. Neural Regen Res 288 2501 PMID: 23233668

Horita et al (2012) Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds. PLoS One 7 e42173 PMID: 22876306

Huang et al (2012) Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds. PLoS One 7 e30662 PMID: 22292013

Rodriguez-Diaz et al (2012) Real-time detection of acetylcholine release from the human endocrine pancreas. Nat Protoc 7 1015 PMID: 22555241

Marrocco et al (2012) Anxiety-like behavior of prenatally stressed rats is associated with a selective reduction of glutamate release in the ventral hippocampus. Proc Natl Acad Sci U S A 32 17143 PMID: 23197707

Wang and Green (2011) Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci 31 7938 PMID: 21613508

Doyon et al (2011) Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. J Neurosci 7 e1002149 PMID: 21931544

Hitt et al (2010) BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol Neurodegener 5 31 PMID: 20731874

Peng et al (2010) Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling. J Neurosci 30 16220 PMID: 21123568

Fritsch et al (2009) Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience 163 415 PMID: 19540312

Shin et al (2008) Mislocalization of h channel subunits underlies h channelopathy in temporal lobe epilepsy. Neurobiol Dis 32 26 PMID: 18657617

Milstein et al (2007) TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55 905 PMID: 17880894

Elliott-Hunt et al (2004) Galanin acts as a neuroprotective factor to the hippocampus. PLoS Comput Biol 101 5105 PMID: 15041741

Evans (2017) Assembly, secretory pathway trafficking, and surface delivery of kainate receptors is regulated by neuronal activity. Cell Rep 19 2613 PMID: 28636947

Zhao (2017) Signaling by growth/differentiation factor 5 through the bone morphogenetic protein receptortype IB protects neurons against kainic acid-induced neurodegeneration. Neurosci Lett 651 36 PMID: 28458020

Fletcher (2017) Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci 20 905 PMID: 28504671

Ferando and Mody (2015) In vitro gamma oscillations following partial and complete ablation of δ subunit-containing GABAA receptors from parvalbumin interneurons. Neuropharmacology 88 91 PMID: 25261782

Parrish et al (2015) Methionine increases BDNF DNA methylation and improves memory in epilepsy. Neurobiol Dis 2 401 PMID: 25909085

Szokol et al (2015) Augmentation of Ca(2+) signaling in astrocytic endfeet in the latent phase of temporal lobe epilepsy. J Biol Chem 9 49 PMID: 25762896

Xiao et al (2015) CX3 chemokine receptor 1 deficiency leads to reduced dendritic complexity and delayed maturation of newborn neurons in the adult mouse hippocampus. Front Cell Neurosci 10 772 PMID: 26109952

Spampinato et al (2015) Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Neurotox Res 8 462 PMID: 25642169

Chang et al (2014) Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 62 296 PMID: 24148856

Domin et al (2014) Group III mGlu receptor agonist, ACPT-I, exerts potential neuroprotective effects in vitro and in vivo. Ann Clin Transl Neurol 26 99 PMID: 24402869


Do you know of a great paper that uses Kainic acid from Tocris? If so please let us know.

Commented out for usability testing

Reviews

TODO: Add Reviews

Literature in this Area

Pain

Pain Research Product Guide

A collection of over 250 products for pain research, the guide includes research tools for the study of:

  • Nociception
  • Ion Channels
  • G-Protein-Coupled Receptors
  • Intracellular Signaling
Addiction

Addiction Poster

The key feature of drug addiction is the inability to stop using a drug despite clear evidence of harm. This poster describes the brain circuits associated with addiction, and provides an overview of the main classes of addictive drugs and the neurotransmitter systems that they target.

Learning & Memory

Learning & Memory Poster

Recognition memory enables us to make judgements about whether or not we have encountered a particular stimulus before. This poster outlines the cellular mechanisms underlying recognition memory and its links to long-term depression, as well as the use of pharmacological intervention to assess the role of neurotransmitters in recognition memory.

Pain

Pain Poster

Peripheral sensitization is the reduction in the threshold of excitability of sensory neurons that results in an augmented response to a given external stimulus. This poster outlines the excitatory and inhibitory signaling pathways involved in modulation of peripheral sensitization. The role of ion channels, GPCRs, neurotrophins, and cytokines in sensory neurons are also described.

Parkinson's

Parkinson's Poster

Parkinson's disease (PD) causes chronic disability and is the second most common neurodegenerative condition. This poster outlines the neurobiology of the disease, as well as highlighting current therapeutic treatments for symptomatic PD, and emerging therapeutic strategies to delay PD onset and progression.

Schizophrenia

Schizophrenia Poster

Schizophrenia is a debilitating psychiatric disorder that affects 1% of the worldwide population. This poster describes the neurobiology of Schizophrenia, as well as highlighting the genetic and environmental factors that play a fundamental role in the etiology of the disease. The current and emerging drug targets are also discussed.

Pathways for Kainic acid

Protocols

TODO: Add Protocols