Dihydro-β-erythroidine hydrobromide

Pricing Availability   Qty
Cat.No. 2349 - Dihydro-b-erythroidine hydrobromide | C16H21NO3.HBr | CAS No. 29734-68-7
Description: α4β2, muscle type and Torpedo nAChR antagonist
Alternative Names: DHβE
Chemical Name: (2S,13bS)-2-Methoxy-2,3,5,6,8,9,10,13-octahydro-1H,12H-benzo[i]pyrano[3,4-g]indolizin-12-one hydrobromide
Purity: ≥98% (HPLC)
Datasheet
Citations (29)
Reviews
Literature (3)

Biological Activity

Competitive nicotinic acetylcholine receptor antagonist with moderate selectivity for the neuronal α4 receptor subunit (IC50 values are 0.19 and 0.37 μM for α4β4 and α4β2 receptors respectively). Antagonizes behavioral effects of nicotine in vivo.

Technical Data

M. Wt 356.26
Formula C16H21NO3.HBr
Storage Desiccate at RT
Purity ≥98% (HPLC)
CAS Number 29734-68-7
PubChem ID 11957537
InChI Key GFIGWAJEIMHJJB-LINSIKMZSA-N
Smiles O=C1CC2=C(CCN4[C@]32C(CC4)=CC[C@H](OC)C3)CO1.Br

The technical data provided above is for guidance only. For batch specific data refer to the Certificate of Analysis.

Tocris products are intended for laboratory research use only, unless stated otherwise.

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
water 35.63 100
DMSO 8.91 25

Preparing Stock Solutions

The following data is based on the product molecular weight 356.26. Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 2.81 mL 14.03 mL 28.07 mL
5 mM 0.56 mL 2.81 mL 5.61 mL
10 mM 0.28 mL 1.4 mL 2.81 mL
50 mM 0.06 mL 0.28 mL 0.56 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

Product Datasheets

Certificate of Analysis / Product Datasheet
Select another batch:

References

References are publications that support the biological activity of the product.

Williams and Robinson (1984) Binding of the nicotinic cholinergic antagonist, dihydro-β-erythroidine, to rat brain tissue. J.Neurosci. 4 2906 PMID: 6502210

Damaj et al (1995) In vivo pharmacological effects of dihydro-β-erythroidine, a nicotinic antagonist, in mice. Psychopharmacology 117 67 PMID: 7724704

Harvey et al (1996) Multiple determinants of dihydro-β-erythroidine sensitivity on rat neuronal nicotinic receptor α subunits. J.Neurochem. 67 1953 PMID: 8863500


If you know of a relevant reference for Dihydro-β-erythroidine hydrobromide, please let us know.

View Related Products by Product Action

View all Nicotinic Receptor (Other Subtype) Antagonists

Keywords: Dihydro-b-erythroidine hydrobromide, Dihydro-b-erythroidine hydrobromide supplier, antagonists, neuronal, alpha4-containing, nicotinic, receptors, α4β2, a4b2, Nicotinic, Receptors, Acetylcholine, nAChR, Non-Selective, Subtypes, Other, Dihydro-beta-erythroidine, hydrobromide, Dihydro-β-erythroidine, DHβE, DHbE, (Other, Subtypes), (a4b2), 2349, Tocris Bioscience

29 Citations for Dihydro-β-erythroidine hydrobromide

Citations are publications that use Tocris products. Selected citations for Dihydro-β-erythroidine hydrobromide include:

Huang et al (2019) Neural mechanisms of contextual modulation in the retinal direction selective circuit. Nat Commun 10 2431 PMID: 31160566

Kutlu et al (2018) Differential effects of α4β2 nicotinic receptor antagonists and partial-agonists on contextual fear extinction in male C57BL/6 mice. Psychopharmacology (Berl) 235 1211 PMID: 29383396

Govind et al (2017) Selective and regulated trapping of nicotinic receptor weak base ligands and relevance to smoking cessation. Elife 6 PMID: 28718768

Sternfeld et al (2017) Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells. Elife 6 PMID: 28195039

Jareczek et al (2017) Plasticity in Brainstem Mechanisms of Pain Modulation by Nicotinic Acetylcholine Receptors in the Rat. Eneuro 4 PMID: 28197544

Dilger et al (2015) Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement. J Neurosci 35 3652 PMID: 25716863

Stouffer et al (2015) Ins enhances striatal DA release by activating cholinergic interneurons and thereby signals reward. Nat Commun 6 8543 PMID: 26503322

Lozovaya et al (2349) GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat Commun 9 1422 PMID: 29651049

Kiguchi (2018) Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation 15 96 PMID: 29587798

Li et al (2009) Specific subtypes of nicotinic cholinergic receptors involved in sympathetic and parasympathetic cardiovascular responses. Neurosci Lett 462 20 PMID: 19573576

Assous (2017) Differential processing of thalamic information via distinct striatal interneuron circuits. Nat Commun 8 15860 PMID: 28604688

Bader and Diener (2015) Novel aspects of cholinergic regulation of colonic ion transport. Elife 3 e00139 PMID: 26236483

Morrie and Feller (2015) An Asymmetric Increase in Inhibitory Synapse Number Underlies the Development of a Direction Selective Circuit in the Retina. Neuroscience 35 9281 PMID: 26109653

Zhong et al (2013) Nicotine elicits prolonged calcium signaling along ventral hippocampal axons. Pharmacol Res Perspect 8 e82719 PMID: 24349346

Miguel Angel Garcia-Bereguiain et al (2016) Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo The Journal of Neuroscience 6 7268 PMID: 27383600

Kiss et al (2014) Nicotinic acetylcholine receptors containing the α7-like subunit mediate contractions of muscles responsible for space positioning of the snail, Helix pomatia L. tentacle. PLoS One 9 e109538 PMID: 25303328

Saunders et al (2015) Corelease of acetylcholine and GABA from cholinergic forebrain neurons. J Neurosci 4 PMID: 25723967

Ngolab et al (2015) Functional Upregulation of α4* Nicotinic Acetylcholine Receptors in VTA GABAergic Neurons Increases Sensitivity to Nicotine Reward. J Neurosci 35 8570 PMID: 26041923

Yorgason et al (2015) Greater ethanol inhibition of presynaptic DA release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors. Front Cell Neurosci 284 854 PMID: 25451295

Elgueta et al (2015) Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells. PLoS One 9 6 PMID: 25709566

Zhang et al (2018) Pauses in Cholinergic Interneuron Activity Are Driven by Excitatory Input and Delayed Rectification, with DA Modulation. Neuron 98 918 PMID: 29754751

Herman et al (2016) A cholinergic basal forebrain feeding circuit modulates appetite suppression Nature 538 253 PMID: 27698417

Mamaligas et al (2016) Nicotinic and opioid receptor regulation of striatal DA D2-receptor mediated transmission Scientific Reports 6 37834 PMID: 27886263

Kunisawa et al (2016) Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors. Behav.Brain Res. 314 173 PMID: 27506652

Li et al (2010) Cytisine induces autonomic cardiovascular responses via activations of different nicotinic receptors. Auton Neurosci 154 14 PMID: 19887306

Brodnik et al (2018) Local GABAA receptor mediated suppression of DA release within the nucleus accumbens. ACS Chem Neurosci 17 1978 PMID: 30253088

Platt et al (2012) Striatal DA transmission is subtly modified in human A53Tα-synuclein overexpressing mice. PLoS One 7 e36397 PMID: 22570709

Caiati et al (2012) Developmental regulation of CB1-mediated spike-time dependent depression at immature mossy fiber-CA3 synapses. Sci Rep 2 285 PMID: 22368777

Goddard et al (2012) Gamma oscillations are generated locally in an attention-related midbrain network. Neuron 73 567 PMID: 22325207


Do you know of a great paper that uses Dihydro-β-erythroidine hydrobromide from Tocris? Please let us know.

Reviews for Dihydro-β-erythroidine hydrobromide

There are currently no reviews for this product. Be the first to review Dihydro-β-erythroidine hydrobromide and earn rewards!

Have you used Dihydro-β-erythroidine hydrobromide?

Submit a review and receive an Amazon gift card.

$50/€35/£30/$50CAN/¥300 Yuan/¥5000 Yen for first to review with an image

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

Literature in this Area

Tocris offers the following scientific literature in this area to showcase our products. We invite you to request* or download your copy today!

*Please note that Tocris will only send literature to established scientific business / institute addresses.


Pain

Pain Research Product Guide

A collection of over 280 products for pain research, the guide includes research tools for the study of:

  • Nociception
  • Ion Channels
  • G-Protein-Coupled Receptors
  • Intracellular Signaling
Nicotinic ACh Receptors

Nicotinic ACh Receptors Scientific Review

Updated in 2014, this review by Sue Wonnacott summarizes the diverse structure and function of nicotinic acetylcholine receptors and gives an in-depth review of the ligands available for nAChR research. Compounds available from Tocris are listed.

Pain

Pain Poster

Peripheral sensitization is the reduction in the threshold of excitability of sensory neurons that results in an augmented response to a given external stimulus. This poster outlines the excitatory and inhibitory signaling pathways involved in modulation of peripheral sensitization. The role of ion channels, GPCRs, neurotrophins, and cytokines in sensory neurons are also described.