PKR-like ER kinase (PERK, EIF2AK3) is an elF2α kinase that inhibits protein translation. PERK is a type one endoplasmic reticulum (ER) membrane protein which is involved in both the integrated stress response (ISR) and unfolded protein response (UPR).
PERK Inhibitors |
|
---|---|
Cat. No. | Product Name / Activity |
5517 | AMG PERK 44 |
Potent and selective PERK inhibitor; orally bioavailable | |
5107 | GSK 2606414 |
Potent and selective PERK inhibitor; orally bioavailable | |
Other |
|
Cat. No. | Product Name / Activity |
5284 | trans-ISRIB |
Integrated stress response (ISR) inhibitor | |
6336 | Trazodone hydrochloride |
Inhibits PERK/eIF2α-P-mediated reduction in protein synthesis; also 5-HT2A and α1 adrenoceptor antagonist |
PKR-like ER kinase (PERK, EIF2AK3), EC 2.7.11.1, is a eukaryotic initiation factor 2α (elF2α) kinase that inhibits protein translation and is important in the endoplasmic reticulum (ER) stress response. PERK is localized to the ER and contains a stress-sensing domain that faces the ER lumen, a transmembrane segment, and a cytosolic kinase domain.
PERK plays an integral role in the unfolded protein response (UPR) and integrated stress response (ISR). The UPR and ISR are activated by a build-up of unfolded proteins in the ER and increase in cellular stressors such as hypoxia, respectively. Induction of these pathways activates PERK by inducing the dissociation of ER chaperones from the stress-sensing domain, resulting in PERK oligomerization and autophosphorylation. Upon activation PERK phosphorylates and inactivates eIF2α, which leads to a global reduction in protein synthesis. As well as suppressing global protein translation, the PERK-dependent inhibition of eIF2α also results in the upregulation of stress-response genes such as ATF4 and the pro-apoptotic protein CHOP (GADD153). This allows the build-up of unfolded proteins to be efficiently processed and promote cell survival during periods of cell stress.
PERK is a useful target for studying diseases associated with UPR and ISR dysfunction. ER stress, hypoxia and aberrant proteins synthesis are all important factors in many major disease states such as cancer, neurodegeneration and diabetes. PERK inhibition has been shown to induce apoptosis and autophagy pathways, therefore PERK inhibitors are potentially useful therapeutic tools for the inhibition of tumorigenesis.
Tocris offers the following scientific literature for PERK to showcase our products. We invite you to request* your copy today!
*Please note that Tocris will only send literature to established scientific business / institute addresses.
This product guide provides a review of the cell cycle and DNA damage research area and lists over 170 products, including research tools for:
Recognition memory enables us to make judgements about whether or not we have encountered a particular stimulus before. This poster outlines the cellular mechanisms underlying recognition memory and its links to long-term depression, as well as the use of pharmacological intervention to assess the role of neurotransmitters in recognition memory.