XE 991 dihydrochloride

Pricing Availability Delivery Time Qty
Cat.No. 2000 - XE 991 dihydrochloride | C26H20N2O.2HCl | CAS No. 122955-13-9
Description: Potent, selective KV7 (KCNQ) channel blocker; blocks M-currents
Chemical Name: 10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone dihydrochloride
Purity: ≥99% (HPLC)
Datasheet
Citations (24)
Literature

Biological Activity

Potent and selective blocker of KV7 (KCNQ) voltage-gated potassium channels. Blocks KV7.2+7.3 (KCNQ2+3) / M-currents (IC50 = 0.6 - 0.98 μM) and KV7.1 (KCNQ1) homomeric channels (IC50 = 0.75 μM) but is less potent against KV7.1/minK channels (IC50 = 11.1 μM). Augments hippocampal ACh release and is a cognitive enhancer following oral administration in vivo.

Technical Data

M. Wt 449.37
Formula C26H20N2O.2HCl
Storage Desiccate at RT
Purity ≥99% (HPLC)
CAS Number 122955-13-9
PubChem ID 45073462
InChI Key WOGWMARIFDNZON-UHFFFAOYSA-N
Smiles Cl.Cl.O=C1C2=C(C=CC=C2)C(CC2=CC=NC=C2)(CC2=CC=NC=C2)C2=C1C=CC=C2

The technical data provided above is for guidance only. For batch specific data refer to the Certificate of Analysis.

All Tocris products are intended for laboratory research use only.

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
water 44.94 100

Preparing Stock Solutions

The following data is based on the product molecular weight 449.37. Batch specific molecular weights may vary from batch to batch due to solvent of hydration, which will affect the solvent volumes required to prepare stock solutions.

Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 2.23 mL 11.13 mL 22.25 mL
5 mM 0.45 mL 2.23 mL 4.45 mL
10 mM 0.22 mL 1.11 mL 2.23 mL
50 mM 0.04 mL 0.22 mL 0.45 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

Product Datasheets

Certificate of Analysis / Product Datasheet
Select another batch:
Safety Datasheet

References

References are publications that support the products' biological activity.

Wang et al (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282 1890 PMID: 9836639

Zaczek et al (1998) Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: comparison to linopirdine. J.Pharmacol.Exp.Ther. 285 724 PMID: 9580619

Wang et al (2000) Molecular basis for differential sensitivity of KCNQ and IKs channels to the cognitive enhancer XE991. Mol.Pharmacol. 57 1218 PMID: 10825393

Passmore et al (2003) KCNQ/M currents in sensory neurons: significance for pain therapy. J.Neurosci. 23 7227 PMID: 12904483


If you know of a relevant reference for XE 991 dihydrochloride, please let us know.

View Related Products by Product Action

View all Voltage-gated Potassium (KV) Channel Blockers

Keywords: XE 991 dihydrochloride, supplier, KCNQ, channel, blockers, Potassium, KV, Channels, voltage-gated, voltage-dependent, K+, KCNQ2, KCNQ3, KCNQ1, XE991, dihydrochloride, KV7.1, Voltage-Gated, Potassium, Channels, Voltage-Gated, Potassium, Channels, Tocris Bioscience

24 Citations for XE 991 dihydrochloride

Citations are publications that use Tocris products. Selected citations for XE 991 dihydrochloride include:

Robbins et al (2013) Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents. PLoS One 8 e71809 PMID: 23977150

Ooi et al (2013) Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. Neural Plast 33 6041 PMID: 23554485

Passmore et al (2012) Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings. Front Mol Neurosci 5 63 PMID: 22593734

He et al (2012) Increased Kv1 channel expression may contribute to decreased sIPSC frequency following chronic inhibition of NR2B-containing NMDAR. Neuropsychopharmacology 37 1338 PMID: 22218089

Leitner et al (2012) Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic channel openers. Br J Pharmacol 165 2244 PMID: 21951272

Köhn et al (2012) Differential effects of cystathionine-γ-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. J Physiol 7 e41951 PMID: 22870268

Zemkova et al (2011) Norepinephrine causes a biphasic change in mammalian pinealocye membrane potential: role of alpha1B-adrenoreceptors, phospholipase C, and Ca2+. Endocrinology 152 3842 PMID: 21828176

Zhang et al (2011) AKAP79/150 signal complexes in G-protein modulation of neuronal ion channels. J Neurosci 31 7199 PMID: 21562284

Geier et al (2011) Dynamic interplay of excitatory and inhibitory coupling modes of neuronal L-type calcium channels. Am J Physiol Cell Physiol 300 C937 PMID: 21228322

McCallum et al (2011) The contribution of Kv7 channels to pregnant mouse and human myometrial contractility. J Neurosci 15 577 PMID: 20132415

Xu et al (2009) MinK-dependent internalization of the IKs potassium channel. Cardiovasc Res 82 430 PMID: 19202166

Joshi et al (2009) KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J Neurosci 329 368 PMID: 19151245

Linley et al (2008) Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception. Br J Pharmacol 28 11240 PMID: 18971466

Wladyka et al (2008) The KCNQ/M-current modulates arterial baroreceptor function at the sensory terminal in rats. J Pharmacol Exp Ther 586 795 PMID: 18048450

Strøbaek et al (2006) Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. J Cell Mol Med 70 1771 PMID: 16926279

Yeung and Greenwood (2005) Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. J Pharmacol Exp Ther 146 585 PMID: 16056238

Greene et al (2017) XE991 and Linopirdine are state-dependent inhibitors for Kv7/KCNQ channels that favor activated single subunits. J.Pharmacol.Exp.Ther. 362 177 PMID: 28483800

Salzer et al (2016) Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca2+-activated chloride channels. Neuropharmacology 110 (A) 277 PMID: 27511837

Bordas et al (2015) The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice. Mol Brain 9 121 PMID: 25904846

Lee et al (2015) N-methyl-D-aspartate receptors mediate activity-dependent down-regulation of potassium channel genes during the expression of homeostatic intrinsic plasticity. J Neurosci 8 4 PMID: 25599691

Sobieski et al (2015) Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro. Front Behav Neurosci 35 11105 PMID: 26245971

Parent et al (2015) Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability. Front Syst Neurosci 9 284 PMID: 26578914

Meredith et al (2015) Kv1 channels and neural processing in vestibular calyx afferents. Mol Pharmacol 9 85 PMID: 26082693

Pérez-Ramírez et al (2015) KV7 Channels Regulate Firing during Synaptic Integration in GABAergic Striatal Neurons. PLoS One 2015 472676 PMID: 26113994


Do you know of a great paper that uses XE 991 dihydrochloride from Tocris? If so please let us know.

XE 991 dihydrochloride Reviews

Average Rating:

(Based on 0 Reviews)


1 Star
0%
2 Star
0%
3 Star
0%
4 Star
0%
5 Star
0%

Have you used XE 991 dihydrochloride?

Submit a review and receive a $25US/€18/£15/$25CAN Amazon gift card if you include an image -$10US/€7/£6/$10CAN Amazon gift card for reviews without an image. Limited to verified customers in USA, Canada and Europe.


Literature in this Area

Cardiovascular

Cardiovascular Research Product Guide

A collection of over 250 products for cardiovascular research, the guide includes research tools for the study of:

  • Hypertension
  • Thrombosis and Hemostasis
  • Atherosclerosis
  • Myocardial Infarction
  • Ischemia/Reperfusion Injury
  • Arrhythmias
  • Heart Failure
Pain

Pain Research Product Guide

A collection of over 250 products for pain research, the guide includes research tools for the study of:

  • Nociception
  • Ion Channels
  • G-Protein-Coupled Receptors
  • Intracellular Signaling
Pain

Pain Poster

Peripheral sensitization is the reduction in the threshold of excitability of sensory neurons that results in an augmented response to a given external stimulus. This poster outlines the excitatory and inhibitory signaling pathways involved in modulation of peripheral sensitization. The role of ion channels, GPCRs, neurotrophins, and cytokines in sensory neurons are also described.