α-Bungarotoxin

Pricing Availability Delivery Time Qty
Cat.No. 2133 - alpha-Bungarotoxin | Ile-Val-Cys-His-Thr-Thr-Ala-Thr-Ser-Pro-Ile-Ser-Ala-Val-Thr-Cys-Pro-Pro-Gly-Glu-Asn-Leu-Cys-Tyr-Arg-Lys-Met-Trp-Cys-Asp-Ala-Phe-Cys-Ser-Ser-Arg-Gly-Lys-Val-Val-Glu-Leu-Gly-Cys-Ala-Ala-Thr-Cys-Pro-Ser-Lys-Lys-Pro-Tyr-Glu-Glu-Val-Thr-Cys-Cys-Ser-Thr-Asp-Lys | CAS No. 11032-79-4
Description: α7 subtype-selective nAChR antagonist
Alternative Names: α-Bgtx, α-BuTX
Datasheet
Citations (18)
Literature

Biological Activity

Neurotoxin that blocks neuromuscular transmission via irreversible inhibition of nicotinic ACh receptors (nAChRs). Prevents opening of nicotinic receptor-associated ion channels and is selective for α7 receptors over α3β4 receptors (IC50 values are 1.6 nM and > 3 μM respectively).

Technical Data

M. Wt 7984.14
Formula C338H529N97O105S11
Sequence IVCHTTATSPISAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG

(Modifications: Disulfide bridge between 3 - 23, 16 - 44, 29 - 33, 48 - 59, 60 - 65)

Storage Desiccate at -20°C
CAS Number 11032-79-4
PubChem ID 90488742
InChI Key NTCJKZSYQTZRQE-CSMGIIAWSA-N
Smiles [H]N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@H]1CSSC[C@@H]2NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H]3CCCN3C(=O)[C@@H]3CCCN3C(=O)[C@H](CSSC[C@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CCCCN)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H]3CSSC[C@H](NC(=O)[C@H](CC4=CNC5=C4C=CC=C5)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC4=CC=C(O)C=C4)NC2=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC2=CC=CC=C2)C(=O)N3)C(C)C)C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H]2CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC3=CC=C(O)C=C3)NC(=O)[C@@H]3CCCN3C(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@@H]3CCCN3C2=O)C(C)C)[C@@H](C)O)C(=O)N[C@H]2CSSC[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CO)NC2=O)[C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CC2=CNC=N2)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N2CCC[C@H]2C(=O)NCC(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H]2CCCN2C(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC2=CNC=N2)NC1=O)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)[C@@H](C)CC)C(C)C)[C@@H](C)O

The technical data provided above is for guidance only. For batch specific data refer to the Certificate of Analysis.

All Tocris products are intended for laboratory research use only.

Solubility Data

SolubilitySoluble in water

Preparing Stock Solutions

The following data is based on the product molecular weight 7984.14. Batch specific molecular weights may vary from batch to batch due to solvent of hydration, which will affect the solvent volumes required to prepare stock solutions.

Select a batch to recalculate based on the batch molecular weight:
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 0.13 mL 0.63 mL 1.25 mL
5 mM 0.03 mL 0.13 mL 0.25 mL
10 mM 0.01 mL 0.06 mL 0.13 mL
50 mM 0 mL 0.01 mL 0.03 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

Product Datasheets

Certificate of Analysis / Product Datasheet
Select another batch:
Safety Datasheet

References

References are publications that support the products' biological activity.

Zhang et al (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12 167 PMID: 7507338

Lopez et al (1998) Unmasking the functions of the chromaffin cell α7 nicotinic receptor by using short pulses of acetylcholine and selective blockers. Proc.Natl.Acad.Sci.USA 95 14184 PMID:


If you know of a relevant reference for α-Bungarotoxin, please let us know.

View Related Products by Product Action

View all Nicotinic (α7) Receptor Antagonists

Keywords: alpha-Bungarotoxin, supplier, α7, alpha7, a7, subtype-selective, nAChR, antagonists, Nicotinic, Receptors, Acetylcholine, α-Bungarotoxin, alpha-Bungarotoxin, neurotoxins, Bungarotoxin, alpha-Bgtx, alpha-BuTX, venoms, a-Bgtx, a-BuTX, Nicotinic, (a7), Receptors, Tocris Bioscience

18 Citations for α-Bungarotoxin

Citations are publications that use Tocris products. Selected citations for α-Bungarotoxin include:

Krais et al (2011) CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression. Carcinogenesis 32 1388 PMID: 21586512

Demarque and Spitzer (2010) Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior. Neuron 67 321 PMID: 20670838

Sun et al (2009) Rosiglitazone inhibits alpha4 nicotinic acetylcholine receptor expression in human lung carcinoma cells through peroxisome proliferator-activated receptor gamma-independent signals. Mol Cancer Ther 8 110 PMID: 19139119

Miyamoto et al (2016) Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity. J Neurosci 291 1719 PMID: 26589795

Gill-Thind et al (2015) Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. J Biol Chem 290 3552 PMID: 25516597

Singh et al (2015) Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 4 PMID: 26374985

Bryant et al (2015) Cholinergic control of γ power in the midbrain spatial attention network. Proc Natl Acad Sci U S A 35 761 PMID: 25589769

Spurny et al (2015) Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Neuropharmacology 112 E2543 PMID: 25918415

Chatzidaki et al (2015) The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors. PLoS One 97 75 PMID: 25998276

Bader and Diener (2015) Novel aspects of cholinergic regulation of colonic ion transport. J Biol Chem 3 e00139 PMID: 26236483

Li (2015) Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms. Neurotherapeutics 35 9799 PMID: 26156983

Ślimak et al (2014) Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption. Front Hum Neurosci 8 12 PMID: 24478678

Macpherson et al (2014) The α 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits Porphyromonas gingivalis-induced expression of interleukin-8 by oral keratinocytes. J Neurosci 63 557 PMID: 24609617

Kamynina et al (2013) Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity. Int J Biochem Cell Biol 45 899 PMID: 23353645

Moult et al (2013) Fast silencing reveals a lost role for reciprocal inhibition in locomotion. Neuron 77 129 PMID: 23312521

Sala et al (2013) CC4, a dimer of cytisine, is a selective partial agonist at α4β2/α6β2 nAChR with improved selectivity for tobacco smoking cessation. Br J Pharmacol 168 835 PMID: 22957729

Zhong et al (2013) Nicotine elicits prolonged calcium signaling along ventral hippocampal axons. Pharmacol Res Perspect 8 e82719 PMID: 24349346

Némethova et al (2013) Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor. Inflamm Res 8 e79264 PMID: 24223920


Do you know of a great paper that uses α-Bungarotoxin from Tocris? If so please let us know.

Commented out for usability testing

Reviews

TODO: Add Reviews

Literature in this Area

Neurodegeneration

Neurodegeneration Product Guide

A collection of over 275 products for neurodegeneration research, the guide includes research tools for the study of:

  • Alzheimer's disease
  • Parkinson's disease
  • Huntington's disease
Pain

Pain Research Product Guide

A collection of over 250 products for pain research, the guide includes research tools for the study of:

  • Nociception
  • Ion Channels
  • G-Protein-Coupled Receptors
  • Intracellular Signaling
Nicotinic ACh Receptors

Nicotinic ACh Receptors Scientific Review

Updated in 2014, this review by Sue Wonnacott summarizes the diverse structure and function of nicotinic acetylcholine receptors and gives an in-depth review of the ligands available for nAChR research. Compounds available from Tocris are listed.

Alzheimer's

Alzheimer's Poster

Alzheimer's disease (AD) is a degenerative brain disease and the most common cause of dementia, affecting approximately 47 million people worldwide. Updated in 2015, this poster summarizes the structural and functional changes observed in the progression of this neurodegenerative disease, as well as classic AD drug targets.

Learning & Memory

Learning & Memory Poster

Recognition memory enables us to make judgements about whether or not we have encountered a particular stimulus before. This poster outlines the cellular mechanisms underlying recognition memory and its links to long-term depression, as well as the use of pharmacological intervention to assess the role of neurotransmitters in recognition memory.

Pain

Pain Poster

Peripheral sensitization is the reduction in the threshold of excitability of sensory neurons that results in an augmented response to a given external stimulus. This poster outlines the excitatory and inhibitory signaling pathways involved in modulation of peripheral sensitization. The role of ion channels, GPCRs, neurotrophins, and cytokines in sensory neurons are also described.

Pathways for α-Bungarotoxin

Protocols

TODO: Add Protocols